Gender gap in health outcomes among the rural working-age: Does weather effects play a role?

Emily Injete Amondo 0I/07/202I

Presentation Outline

\checkmark Introduction and pathways
\checkmark Research questions
\checkmark Methodology - Study area, data sources, empirical framework
\checkmark Results
\checkmark Conclusion

Introduction - Gender and Health

\checkmark Health and gender equality - fundamental human rights in the sustainable development goals.

Health
O An asset for economic growth and development (Bloom et al., 2001, 2019; Schultz, 2010).

O Ability to cope with the effects resulting from natural disasters (WHO, 2014).

Gender equality
O A key determinant of health (WHO Commission on Social Determinants of Health, 2008)
O Facilitates economic growth and development - 'smart economics' (World Bank, 2012).

O Improved food and nutrition security (Agarwal, 2018; Meinzen-Dick et al., 2012)
O Lowers fertility and child mortality (Shannon et al., 2019).
O Peaceful societies

Pathways through which gender is translated into health risks

- Differential susceptibility and exposures to injuries, diseases and disabilities.
- Differences in health behaviors and health care access.
- Biases in health system and health research.

Source; (Gupta et al., 2019; Manandhar et al., 2018; Shannon et al., 2019)

O Gender roles - determine how and where women and men spend most of their times. A major determinant of the different exposure and intensity patterns to infectious agents of diseases (Rancourt, 2013; WHO, 2007).

O Multiple roles, caregiving, breadwinner roles, risk taking roles and masculinity are all sources of health risks in either men or women (Shannon et al., 2019).

O Both gender and sex matter; women live longer today than men in most countries (Zarulli et al., 2018). What about quality of life and morbidity rates?

Pathways of climate related health risks (gender perspective)

Climate/weather extremes - a gender-based health inequality risk-multiplier (Sorensen et al., 2018; WHO, 2014).

\checkmark Weakness in health care

Research questions

- What is the effect of temperature and rainfall variabilities on the health of men and women in the working age group?
- What is the association between healthcare services and health outcomes of men and women?
- What is the gender gap in health outcomes among the working age individuals? Do weather effects play a role in explaining the gender health gap?
- What is the contribution of the health care services in explaining the gender gap?

Methodology - Study area (Uganda)

\checkmark Total population in 2019:44 million (World Bank, n.d).
\checkmark At least 75% of the inhabitants reside in rural areas (Ibid).
$\checkmark 50.7 \%$ of the total population were female (Ibid).
$\checkmark 51.5 \%(22.8 \mathrm{M})$ of population in the working age (15-64 years) as of 2019 (lbid)
\checkmark Proportion of working age projected to increase until 2070 (UNICEF 2019).
\checkmark Achievement of gender parity - ranked position 65/I53 countries with a score of 0.717 towards (World Economic Forum, 2020).

Uganda - Health indicators

Figure I: Life expectancy, infant and adult mortality rates in Uganda Source, adapted from the World bank data

Data sources

I). Uganda National Panel Survey (UNPS) -LSMS (2009-20I4).

O Pooled sample of rural individuals in 4 waves was 49,644 with $\mathbf{2 2 , 7 4 6}$ individuals in the working age category.

O Individual as well as household factors - health, healthcare access, labor force, education and marital status at individual level.

O Locations geo-referenced.
2) Weather data

O Climate Hazards group Infrared Precipitation with Stations (CHIRPS) data version 2, (Funk et al., 2015).. (1981 to 2009/2014)

O Moderate Resolution Imaging Spectroradiometer-MODIS (Hooker et al., 2018; Wan et al. 2015)

Data variables (LSMS data) illness prevalence

Illness captured interms of symptoms

Outcome variables

\checkmark Number of sick days (illness or injury) in last 30 days.
\checkmark Number of work day lost due to illness
\checkmark Dummy variable (Yes/No)- if suffered any illness or injury.

Figure 2: Proportion of men and women who suffered from different illness in the study areas

Independent variables (LSMS data)

\checkmark Places individuals consulted first when ill (pharmacy/drug shop, private hospital etc).
\checkmark Distance to the health care facility
\checkmark Use of (treated) mosquito net.

Data Variables (independent) - Weather data

I). Temperature in the month prior to the interview (0C).

O Rainfall in the month prior to the interview (log).
O Negative rainfall deviation
O Positive temperature deviations

Figure 3: Distribution of annual rainfall (a) and temperature (b) deviations from the mean.

Summary statistics

Variable (Socio- economic)	Total Sample) $(N=22,746)$	$\begin{gathered} \text { Women } \\ (N=1 I, 7 I I) \end{gathered}$	$\begin{gathered} \text { Men } \\ \mathrm{N}=(11,035) \\ \hline \end{gathered}$	Difference
	1	2	3	4
Age (years)	31.33	31.90	30.72	1.181***
Education (years)	5.786	5.065	6.551	-1.486***
Occupation				
Salaried/wage ($\mathrm{I}=$ yes)	0.218	0.161	0.278	-0.117***
Business ($1=$ yes)	0.177	0.172	0.183	-0.010**
Farming ($\mathrm{I}=$ yes)	0.834	0.865	0.801	0.064***
Income categories				
No personal income ($1=$ yes)	0.826	0.879	0.771	0.107***
Income (I<=250000 UGX)	0.141	0.107	0.177	-0.069***
Income (>250000-750000)	0.027	0.012	0.042	-0.031***
Income (>750000)	0.005	0.002	0.009	-0.007
Marital status				
Married monogamous ($1=$ yes)	0.401	0.410	0.392	0.018***
Married polygamous ($1=$ yes)	0.130	0.151	0.108	0.042***
Divorced / Separated (I = yes)	0.057	0.078	0.034	0.045***
Widow/Widower (1 = yes)	0.039	0.068	0.006	0.064***
Never married ($1=$ yes)	0.372	0.290	0.459	-0.169***
HH Asset Index	-0.466	-0.479	-0.452	-0.027
WASH index	-0.370	-0.377	-0.362	-0.015
Dependency ratio	125.75	134.91	116.03	18.88***
HDDS	7.770	7.749	7.792	-0.042

Summary statistics

Variable (Health care)	Total Sample)	Women	Men	Difference
	\mathbf{I}	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
Mosquito net use (I=Yes)	0.483	$0.5 I 4$	0.450	$0.064^{* * *}$
Treated mosquito nets (I=Yes)	0.394	0.42 I	0.365	$0.056^{* * *}$
Illness consulted (I=Yes)	0.879	0.88 I	0.876	0.005
Distance to health facility (Km)	4.598	4.794	4.310	$0.483^{* *}$
Government hospital (I=Yes)	0.338	0.368	0.294	$0.073^{* * *}$
Private hospital/doctor (I=Yes)	0.355	0.34 I	0.375	$-0.034^{* * *}$
Pharmacy or shop (I=Yes)	0.249	0.230	0.275	$-0.044^{* * *}$
Other healthcare (I=Yes)	0.050	0.053	0.046	0.007

Weather variables	Total Sample	Women	Men	Difference
Negative rain deviation (I=yes)	0.382	0.377	0.386	4
Positive temperature deviation (I=Yes)	0.410	0.409	0.413	-0.008
Rainfall (month mm)	107.65	107.02	108.34	-0.003
Temperature (month oC)	29.16	29.21	29.11	-1.318

Summary statistics (outcome variables)

N	Variable	All individuals	Women	Men	Difference
		(1)	(2)	(3)	(4)
22,746	Suffered illness ($\mathrm{I}=$ Yes)	0.309 (0.462)	0.356 (0.438)	0.259 (0.478)	0.097***
22,746	Days illness	3.164 (6.517)	3.726 (6.921)	2.568 (6.001)	1.157***
7,028	Days of illness if >0	10.220 (8.074)	10.437 (8.024)	9.905 (8.138)	0.532***
22,746	Stopped working ($1=Y$ es)	0.225 (0.417)	0.261 (0.439)	0.188 (0.391)	0.073***
22,746	Days stopped working	1.482 (4.087)	1.673 (4.149)	1.282 (4.009)	0.391***
5,129	Days stopped working if >0	6.576 (6.37I)	6.411 (5.970)	6.819 (6.914)	-0.408**

Empirical strategies

I) Two parts model (Belotti et al., 2015).

Separate estimations at extensive margin (if any day of illness or workday lost).
Intensive margins (intensity of days/how much - number of days) of those ill.
Overall effect of the outcome variable - total sample.

O Logit model in the first part - the probability that an individual has any illness \& factors
O GLM model in the second part - conditional (No. of days, if any).
O Log link function and gamma as the distribution family.

$$
E\left(Y_{i}\right)=\operatorname{Pr}\left(Y_{i}>0\right) * E\left(Y_{i} \mid Y_{i}>0\right)
$$

O Hurdle negative binomial model (HNBM) - for robustness check.
2) Single index model (GLM, NBM): Health care services on days of illness/workday lost: -

Empirical strategies : decomposition

Multivariate decomposition methods for non-linear models (Powers et al. (201I).

O Explain sources of differences in women-men illness.
O Quantify inequalities in health to be eliminated or narrowed down, if both groups had same resources or if women had male covariates.

- Overall and detailed decomposition.

$$
\bar{Y}_{w}-\bar{Y}_{m}=\left[F\left(\bar{X}_{w} \hat{\beta}_{w}\right)-\left(\bar{X}_{m} \hat{\beta}_{w}\right)\right]-\left[F\left(\bar{X}_{m} \hat{\beta}_{w}\right)-\left(\bar{X}_{m} \hat{\beta}_{m}\right)\right]
$$

O Logit and count data decomposition approaches.

Results: weather and days of illness (AME)

Variables	Total Sample			Women			Men		
	Logit	GLM	Overall	Logit	GLM	Overall	Logit	GLM	Overall
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
Negative rain deviation	0.075***	-0.198	0.688***	0.083***	0.557	1.043***	0.067***	-1.228**	0.337*
	(0.009)	(0.319)	(0.137)	(0.014)	(0.418)	(0.203)	(0.013)	(0.475)	(0.179)
Log monthly rain	-0.044*	-0.095	-0.473	-0.021	-0.262	-0.306	-0.064*	0.323	-0.545
	(0.025)	(0.779)	(0.345)	(0.036)	(0.997)	(0.502)	(0.034)	(1.215)	(0.462)
Log rainfall squared	0.007**	0.009	0.073*	0.005	0.030	0.059	0.009**	-0.046	0.075
	(0.003)	(0.100)	(0.044)	(0.005)	(0.129)	(0.065)	(0.004)	(0.156)	(0.059)
Positive temperature	0.023***	0.016	0.232**	0.021**	-0.031	0.198	0.024**	0.145	0.268**
deviation	(0.007)	(0.217)	(0.095)	(0.009)	(0.284)	(0.142)	(0.009)	(0.335)	(0.125)
Monthly temperature	0.044***	-0.041	0.423***	0.039***	0.246	0.493***	0.049***	-0.373	0.377**
	(0.009)	(0.297)	(0.128)	(0.012)	(0.359)	(0.182)	(0.013)	(0.499)	(0.179)
Temperature squared	-0.001***	0.000	-0.006***	-0.001***	-0.004	-0.007**	-0.001***	0.006	-0.006**
	(0.000)	(0.005)	(0.002)	(0.000)	(0.006)	(0.003)	(0.000)	(0.008)	(0.003)
Other variables	Yes								
N	22,468	6,970	22,468	11,567	4,134	11,567	10,901	2,836	10,901

Standard errors in parentheses $* * * p<0.01, * * p<0.05,{ }^{*} p<0.1$
Other variables include; age, years of schooling, asset index, WASH index, treated net use, occupation, marital status, dependency ratio, survey years

Weather and days of work lost

	Total Sample			Women			Men		
	Logit	GLM	Total	Logit	GLM	Total	Logit	GLM	Total
Variables	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
Negative rainfall	0.068***	-0.787***	0.262***	0.080***	-0.772**	0.303**	0.056***	-0.762*	0.226**
deviation	(0.009)	(0.282)	(0.084)	(0.013)	(0.365)	(0.123)	(0.012)	(0.423)	(0.113)
Log month rainfall	0.018	0.499	0.226	0.036	I.466*	0.607**	0.000	-1.293	-0.243
	(0.024)	(0.662)	(0.215)	(0.034)	(0.801)	(0.304)	(0.032)	(1.141)	(0.303)
Log rain squared	-0.001	-0.059	-0.022	-0.003	-0.184*	-0.069*	0.001	0.162	0.034
	(0.003)	(0.086)	(0.028)	(0.004)	(0.104)	(0.039)	(0.004)	(0.146)	(0.039)
Positive temperature	0.012**	0.034	0.088	0.015*	0.017	0.101	0.008	0.094	0.074
deviation	(0.006)	(0.192)	(0.059)	(0.009)	(0.239)	(0.085)	(0.008)	(0.312)	(0.081)
Month temperature	0.027***	-0.111	0.150*	0.019	-0.142	0.082	0.038***	0.044	0.264**
	(0.008)	(0.250)	(0.078)	(0.012)	(0.290)	(0.106)	(0.012)	(0.444)	(0.116)
Temperature squared	$0.000^{* * *}$	0.002	-0.002*	-0.000		-0.001	-0.001***	-0.001	-0.004**
	(0.000)	(0.004)	(0.00I)	(0.000)	(0.005)	(0.002)	(0.000)	(0.007)	(0.002)
Other variables \& year	Yes								
N	22468	5083	22468	II, 568	3028	11568	10901	2056	10901

Standard errors in parentheses ${ }^{* * *} \mathrm{p}<0.01,{ }^{* *} \mathrm{p}<0.05,{ }^{*} \mathrm{p}<0.1$
Other variables include; age, years of schooling, asset index, WASH index, treated net use, occupation, marital status, dependency ratio, survey years

Health care services on days of illness

	Total sample			Women			Men		
Variables	GLM (1)	Truncated NB (2)	Negative Binomial (3)	GLM (4)	Truncated NB (5)	Negative Binomial (6)	GLM (5)	Truncated NB (8)	Negative Binomial (9)
Distance to health facility	$\begin{aligned} & \hline 0.125^{* * *} \\ & (0.010) \end{aligned}$	$\begin{aligned} & \hline 0.123^{* * *} \\ & (0.01 \mathrm{I}) \end{aligned}$	$\begin{aligned} & \hline 0.122 * * * \\ & (0.010) \end{aligned}$	$\begin{aligned} & \hline 0.1113^{* * *} \\ & (0.0 \mid 2) \end{aligned}$	$\begin{aligned} & \hline 0.1 I 2^{* * *} \\ & (0.0 \mid 3) \end{aligned}$	$\begin{aligned} & \hline 0.111 I^{* * *} \\ & (0.0 \mid 3) \end{aligned}$	$\begin{array}{\|l\|} \hline 0.14 I^{* * *} \\ (0.018) \end{array}$	$\begin{aligned} & \hline 0.138^{* * *} \\ & (0.018) \end{aligned}$	$\begin{aligned} & \hline 0.136^{* * *} \\ & (0.017) \end{aligned}$
Government hospital (I=yes)	$\begin{aligned} & -I .128^{* *} \\ & (0.44 I) \end{aligned}$	$\begin{aligned} & -1.142 * * * \\ & (0.412) \end{aligned}$	$\begin{aligned} & -1.125^{* * *} \\ & (0.396) \end{aligned}$	$\begin{aligned} & -0.669 \\ & (0.556) \end{aligned}$	$\begin{aligned} & -0.686 \\ & (0.527) \end{aligned}$	$\begin{aligned} & -0.679 \\ & (0.508) \end{aligned}$	$\begin{aligned} & -1.839 * * * \\ & (0.708) \end{aligned}$	$\begin{aligned} & -1.867 * * * \\ & (0.660) \end{aligned}$	$\begin{aligned} & -1.835^{* * *} \\ & (0.63 \mathrm{I}) \end{aligned}$
Private hospital/doctor	$\begin{aligned} & -1.098^{* *} \\ & (0.442) \end{aligned}$	$\begin{aligned} & -I .128^{* * *} \\ & (0.413) \end{aligned}$	$\begin{aligned} & -1.114 * * * \\ & (0.396) \end{aligned}$	$\begin{aligned} & -0.555 \\ & (0.563) \end{aligned}$	$\begin{aligned} & -0.586 \\ & (0.533) \end{aligned}$	$\begin{aligned} & -0.583 \\ & (0.5 \text { I } 4 \end{aligned}$	$\begin{aligned} & -1.979 * * * \\ & (0.696) \end{aligned}$	$\begin{aligned} & -2.02 I^{* * *} \\ & (0.65 \mathrm{I}) \end{aligned}$	$\begin{aligned} & -1.988^{* * *} \\ & (0.622) \end{aligned}$
Pharmacy or shop	$\begin{aligned} & -3.214^{* * *} \\ & (0.453) \\ & \hline \end{aligned}$	$\begin{aligned} & -3.289 * * * \\ & (0.430) \\ & \hline \end{aligned}$	$\begin{aligned} & -3.209 * * * \\ & (0.413) \\ & \hline \end{aligned}$	$\begin{array}{\|l} -2.887^{* * *} \\ (0.580) \\ \hline \end{array}$	$\begin{aligned} & -2.958^{* * *} \\ & (0.558) \\ & \hline \end{aligned}$	$\begin{aligned} & -2.889 * * * \\ & (0.537) \\ & \hline \end{aligned}$	$\begin{array}{\|l} -3.768^{* * *} \\ (0.713) \\ \hline \end{array}$	$\begin{aligned} & -3.86 I^{* * *} \\ & (0.675) \\ & \hline \end{aligned}$	$\begin{aligned} & -3.766^{* * *} \\ & (0.644) \\ & \hline \end{aligned}$
Weather variables	Yes								
Other covariates	Yes								
N	6,122	6,122	6,122	3,639	3,639	3,639	2483	2,483	2483

Standard errors in parentheses $* * * p<0.01, * * p<0.05, * p<0.1$
Other variables include; age, years of schooling, asset index, WASH index, treated net use, occupation, marital status, dependency ratio, survey years

Health care services on work days lost

VARIABLES	Total sample			Women			Men		
	GLM	Truncated NB	Negative Binomial	GLM	Truncated NB	Negative Binomial	GLM	Truncated NB	Negative Binomial
	(1)	(2)	(3)	(7)	(8)	(9)	(4)	(5)	(6)
Distance to health facility	0.092***	0.090***	0.082***	0.089***	0.088***	0.077***	0.092***	0.089***	0.085***
	(0.009)	(0.009)	(0.009)	(0.011)	(0.010)	(0.011)	(0.015)	(0.015)	(0.015)
Government hospital(I=yes)	-1.182***	-1.208***	-1.183***	-0.900*	-0.907**	-0.977**	-1.691***	-1.743***	-1.532***
	(0.359)	(0.327)	(0.322)	(0.459)	(0.398)	(0.396)	(0.579)	(0.563)	(0.545)
Private hospital/doctor	-1.111***	-1.148***	-1.088***	-0.764*	-0.779*	-0.761*	-1.782***	-1.847***	-1.671***
	(0.359)	(0.326)	(0.32I)	(0.464)	(0.402)	(0.399)	(0.564)	(0.555)	(0.537)
Pharmacy or shop	-3.041***	-3.217***	-3.261***	-2.745***	-2.903***	-2.992***	-3.546***	-3.751***	-3.718***
	(0.380)	(0.352)	(0.342)	(0.491)	(0.437)	(0.427)	(0.603)	(0.593)	(0.568)
Weather variables	Yes								
Other covariates	Yes								
N	4632	4632	6122	2,776	2,776	3,639	1,856	1,856	2,483

Standard errors in parentheses ${ }^{* * *} p<0.01,{ }^{* *} p<0.05, * p<0.1$
Other variables include; age, years of schooling, asset index, WASH index, treated net use, occupation, marital status, dependency ratio, survey years

Source of gap in illness between men \& women - decomposition

Without health care services

	Logistic				Negative binomial			
VARIABLES	Suffered illness (dummy)		Stopped working (dummy)		Days illness (number)		Days stopped working	
Overall decomposition (Women - men)	Coefficie nts	Percent	Coefficient s	Percen t	Coefficient	Percent	Coefficient	Percent
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Characteristics (E) (Explained)	$\begin{gathered} \hline 0.025 * * * \\ (0.003) \end{gathered}$	26.61	$\begin{gathered} \hline 0.024 * * * \\ (0.003) \end{gathered}$	33.89	$\begin{gathered} \hline 0.318^{* * *} \\ (0.076) \end{gathered}$	27.997	$\begin{gathered} \hline 0.155 * * * \\ (0.039) \end{gathered}$	40.19
Coefficients (C) -	0.068***	73.39	0.046***	66.10	0.817***	72.003	0.230**	59.81
(Unexplained)	(0.009)		(0.008)		(0.174)		(0.092)	
Raw difference	$\begin{gathered} 0.093 * * * \\ (0.008) \\ \hline \end{gathered}$	100	$\begin{gathered} 0.070 * * * \\ (0.007) \end{gathered}$	100	$\begin{aligned} & \text { I.134*** } \\ & (0.168) \end{aligned}$	100	$\begin{aligned} & 0.385 * * * \\ & (0.0896) \end{aligned}$	100

With health care services (comparison with columns 5 \& 6 above)

VARIABLES	(I)	(2)
Overall decomposition	Coefficients	
	$0.187 * * *$	Percent
Characteristics (E)- Explained component	(0.026)	54.02
Coefficients (C) - Unexplained component	$0.159 * * *$	45.98
R - raw difference	(0.056)	
	$0.345 * * *$	100
	(0.059)	

Implication of illness on dietary diversity

Conclusion

O Both men and women health were negatively affected by weather anomalies at the extensive margins.

O Overall effect of weather variables was significant, positive and of higher magnitude in women than in men.

O Health care services matter in reduction of the number of illness and number of work day lost.
O Health-seeking behaviours is the main source of the women-men health gap in terms of days of illness. Also education, income, occupation.

O Improved access to quality health care and women empowerment.
O Investment in health adaptation such as early warning systems, health insurance.
O Time poverty reduction strategies.

The End
Thank you for listening

